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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Spheres with varying density in general relativity 
M. C. DURGAPAL and G. L. GEHLOT 
Department of Physics, University of Jodhpur, Jodhpur, India 
MS.  received 8th January 1971 

Abstract. Exact internal solutions for massive spheres with three different 
distributions of density have been found. The central core density is con- 
sidered to be constant while the outer region has two types of varying densities : 
(i) varying inversely as the square of the radial distance; (ii) varying para- 
bolically as p cc 1  constant. The solutions are found to be continuous at 
different boundaries while the densities of different regions are not continuous 
but vary slightly. With proper choice of different parameters appearing in 
the solutions, we can apply the results to actual problems of stellar physics. 

1. Introduction 
In  actual problems related to stellar bodies the exact internal solutions of spheres 

with constant density can not be applied, because the density does not remain constant 
throughout the sphere. The authors (1969) have found exact internal solutions for 
dense massive stars with two density distributions. The only drawback is that the 
variation of the density in the outer region is restricted only to a particular distribution 
of matter. The variation of the density may not be the same in the whole outer 
region. I t  may be slow in the beginning and fast later or it may be fast in the beginning 
and slow later. Harrison e t  al. (1965) solved the problem by considering a scaling 
law and dividing the whole sphere in three different zones. Various parameters were 
calculated by numerical methods. 

In  this paper the outer region is assumed to have two different types of density 
variations: (i) p cc l / r 2  and (ii) p cc (1 -P/constant). An inverse square variation 
and a parabolic variation of density are chosen. Particular solutions of Einstein’s field 
equations have been found exactly involving no computer calculations. The  con- 
stants of proportionality can be chosen to suit various types of models for stellar 
bodies. 

In  choosing these density distributions we have taken into account the following 
points : 

(i) The density variation p K l / r 2  is the most rapid variation of density. If 
the power of Y becomes less than - 2 the solutions obtained are physically unreason- 
able. Moreover, in this choice of density eh comes out as a constant for the whole 
region. e/ appears in the expressions for proper mass and proper volume while 
solving the problems related to gravitational collapse. 

(ii) The variation p ac 1 - r2 /K2  is the most smooth variation of density. The  
density variation reduces as the value of K increases. When K = CO the density 
becomes constant and the solutions reduce to those of a constant density sphere. 

The general assumptions made here for solving the Einstein’s field equations 
are the following : 

(i) The density distribution: In  part (2) of the solutions the density is constant = p o  
in the central core 0 < Y < y1 ; in the middle region y1 < Y < y2 the density is given by 
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where K 2 r2, and in the outermost strata the density is 

877-p = C / r 2 .  (2) 
I n  part (1) of the solutions the density is constant and equal to po, in the central 

core 0 < Y < r , ;  in the middle region r1 < Y < r2 

8rrp = C/r2 (2‘) 
and in the outermost strata r2 < Y < r3 

where K r 3 .  
(ii) The  system is spherically symmetric and static with regular space-time, the 

centre of symmetry being the origin. 
(iii) The  space is empty outside a finite region of radius r3 .  i2t Y = r 3  the internal 

solutions and external Schwarzschild solutions have the same value. This is necessary 
for continuity. 

(iv) The solutions in all the three regions must have the same value at the internal 
boundaries r = r1 and Y = r2.  

(v) The pressure must be continuous at the internal boundary and must vanish 
atthesurfacer = r3 .  

(vi) The pressure and density must be finite and positive at all the points, with 
the restrictions 

P < 4, (Bondi 1964) or P < p (Zeldovich 1962). 

Taking the velocity of light c = 1 and the gravitational constant G = 1, the 
relations between density and the pressure P and the components of the energy- 
momentum tensor of a perfect fluid are given by 

p = Too - P = T 1 1 = T 2 = T 3  2 3 T,’ = 0 (p # v) 

2. Field equations and their solutions 
The line element is given by 

ds2 = ev dt2- ea dr2- r2 do2 - it2 sin20 d+2. (4) 
Here X and v are functions of Y alone. The  resulting field equations (Tolman 1934) 
are 

-8i~T1’ = 87rP = eba(v’/r+ 1/y2)- l / r2  ( 5 )  

Part (1): Outer region r2 < Y < r 3 :  
The equations (1’) and (7)  give 

putting the constant of integration zero for simplification. We could have started 
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with the assumption that e -A = 1 - const x r2 - const x r4 and obtained the expression 
for density, because it is ea which appears in all the equations of proper volume or 
proper mass. So in the present paper we shall take the integration constant in the 
solution of e -n  to be zero. We can further write the expression for e-n as 

where x = r2/K2. The value of e -a  at Y = y 3  is 

e-A = 1 - 2m/r3 

where 'm' is the total mass of the sphere. The continuity of e 
boundary gives us 

4n-p'r33 
m = -  (5 - 3r3"/K2). 

15 
Putting v = 2 In U and using equations (5) and (6) we get 

d2u U -+- = 0 
dw2 4 

where 

x2--#x+- 

giving us 

or 

where C1 and Cz are constants of integration. 
From equations (5), (8) and (12)  we get 

U = C1 cos$w+C2sin$w 

ev = U" = (C,  cos $w + Cz sin Bw)" 

C2 - C1 tan iw 
C1 + Cz tan &w 

8vP = M --fl 

(9) 
a at the external 

where 
3 2 v p  (5x-3s")) 

and 
8vp'  

15 
N = - (5 - 3%). 

At the external boundary r = y 3  the pressure is zero and the value of ev is given by 

ev = 1 -2m/r3  = Q (say). (14) 
The  vanishing of the pressure and the continuity of e" at the external boundary gives 

Q1/2 
C1 = - (M3 cos +w3 - N3 sin 4w3) (15) 

M3 
QlE 

Cz = __ ( M 3  sin4w3 + N3 cos $w3) 
M3 

where M3, N 3  and w3 are respective values of M ,  N and w when x = r3"/K2. 
2A 
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The middle region r1 < r < r2 :  
Equations (2) and (7) give 

e-)* = 1 - C 

the constant of integration being taken as zero. Equations (5), (6) and (17) lead to 
the equation 

where 
r2y" - ry' - (n  + l ) (n  - 1)y = 0 (18) 

v = 2 lny  and C = (1 -n2) ) i (2 -n2) .  

n is always less than 1 since C must always be less than one. 
Equation (18) can be solved easily to give 

ev = ( D,rl + D2r1- n)2 (19) 

where D, and D2 are two constants of integration. The  expression for the pressure 
in this region is obtained from equations (S), (17) and (19) as 

2(1- C )  Dl( 1 +n)P+ D z ( l - n ) ~ - ~  
8rP = ___ 

Y ( D,rl + + D2r1-n 

The continuity of ea, ev and P at the boundary Y = r2 gives 

2( 1 - C )  Dl( 1 + T Z ) Y ~ '  +' + D2( 1 - T Z ) Y ~ ~  --It 

- Y2 ( Dlr21+n + D 2 ~ 2 1 - n  

where m' = mass contained within the radius Y = y2 or 

C C2 - C1 tan*w, 
C, -I- C2 tan i w 2  

--AT2 (23) 

(1 - n 2 ) y 2  
= [; 4rp' (1 Y 2  dr. 

2(2-n2) & 

(24) 

Equation (24) decides the value of n to be chosen in the middle region in terms 
of p ' ,  r2 and K. The equations (22) and (23) can be solved to get the exact values 
of D, and Dz. Thus we know all the constants appearing in the exact solutions of 
the middle region. 

The  central core 0 < r < r l :  From the Schwarzschild solution for a constant 
density sphere (Tolman 1934) 

lR2 e-2 = 1 - y 2  

ev = {A  - B( 1 - Y ~ / R ~ ) ~ / ~ ) ~  
3B(1- Y ' / R ~ ) ~ ' ~  -4) 
A - B( 1 - r2/R2)1/2 

8rP = - 

where 
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The  continuity of e-A, e” and P at Y = r1 gives us 

A = 8ev1’2(3 + 8nP1R2) 
B = +eVJ2(1 + 8nP1R2)(l - r12/R2)-1’2  

(30) 
(31) 

where 
evi = (D1~11+n+D2~11-n)2 

Y1 i Dlrl l  + + D2r11- 
2(1-C) Dl(1+n)rln+D2(1-n)rl-n C 1 -K- 8nP1 = - 

Equation (29) is of vital importance as it correlates the central density pc ,  the 
parameter n and p’ in terms of radii Y ~ ,  r2 and parameter K. 
Part (2): The  density is constant in the central region 0 < Y 6 r l .  I n  the outer 
region the density distribution is 

8np = C/r2 ~2 < Y 6 r3 
while in the middle region r1 < Y < r2 the density is 

p = p’(1 -P/K2).  

We will not go into the details of the solutions and shall write only the relevant 
equations. 
Outermost region r2 6 Y 6 r 3 :  

2m 1 ( l - n z )  
= ___ (”, j r3  ( 2 - 4  r2 

8np = - 

where m = total mass of the sphere 

ev = (D1r1+n+D2~1-n )2  
1 - n  1 

16n2(2 -n2) 
- - 

( Y I Y 3 )  - - (Y/r3>n 

( 1  + n)2(r/r3) -n - (1 - n)2(r/r3)n 
8i7P = 

Middle region : 
8np’K2 

15 
e-?. = ( 5 ~  - 3x2) K 2 Y, 

3 
ev = ( C1 cos 8w + C, sin 8 ~ ) ~  

Cz - C1 tan +w 
C, + C2 tan 6w 

8rrP= M (  
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where &?, N and w are similar to those appearing in equation (13). The  constants 
C,, and Cz can be evaluated from equations 

( Y Z / 4 - n - ( Y 2 / Y 3 ) n  -Nz = 
C2 - C, tan i w 2  

C, + C2 tan i w z  

M,, N z  and w2 are the respective values of M ,  N and w when x = rZ2/K2 
The  central core 0 < r < Y,: The density is constant 

e -a  = l - r2 /R2 
8xpC~1'  8 7 7 ~ ~ ~ 2 ~  

3 15 

R2 = 3 / 8 n p c  

-- = ~ ( 5  - 3Y,2/K2) 

p c  = p'(  1 - 3Y1'/5K2) 
ev = { A  - B( 1 - Y ~ / R ~ ) ~ ' ~ } ~  

1 3B( 1 - Y'/R')~'' - A 
8xP = - (- 

R2 A - B( 1 - Y ~ / R ~ ) ~ F )  
where 

A = 4ev1i2(3 + 8.irP1R2) 
B = +evl'z(l +8nPlR2)(1 - Y ~ ~ / R ~ ) - ~ ~ ~  
evil2 = C, cos +wl + Cz siniw, 

- AT1 I 

C2 - C1 tan i w ,  
C, + C2 tan 4wl 

8 ~ P 1  = M i  ( 
3. Discussions 

If we have at Y = 0 
The  pressure density restrictions in (vi) limit the values of parameters further. 

P 6 p, /3  we get A 2 2B 
p < P O  we get A 2 3B/2 

in order that the pressure should remain non-negative we must further restrict 
A < 3B. 

The values of e>+, ev and P have been shown to be continuous at all the boundaries, 
but the densities at the boundaries change from one region to another. 

In Part ( 1 )  o f  the solutions we have 

at  Y = Y,: p (middle) = Qp, 
Y = Y, 

1 Y,2 

3 Y, 
at  Y = Y,: p (middle) = -,pc = i ( 1  - 3 r Z 2 / 5 K 2 ) p '  

Y = Y, 
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a t  Y = r3: p (surface) = pCYl2(1 - Y ~ ~ / K ~ ) / Y ~ ~ ( I  - 3r 1 5 ~ ~ 1 .  
Y = 13 

In  Part (2) of the solutions we have 

at r = r l :  p (middle) = pc( 1 - y12/K2)/( 1 - 3r12/5K2) 
Y = Y1 

(1 - y Z 2 / K 2 )  
(1 - 3?'12/5K2) 

at Y = r2:  p (middle) = p'(1 - Y ~ ~ / K ~ )  = pC-- 
r = r2 

p (outer) 
Y = Y 2  

p (surface) = Q p c ~ 2 2 ( 1  - 3 ~ ~ ~ / 5 K ~ ) / r , ~ (  1 - 3rI2/5K2). 
Y = Y 3  

choice of various radii. 

density we have 

= Qp,( 1 - 3 ~ , ~ / 5 K ~ ) / (  1 - 3r12/5K2) 

at Y = r3: 

We see that the densities at the boundaries in different regions depend upon the 

For the values of the parameter n in the region of inverse square variation of 

C = (1-n2)/(2-n2)  or n2 = ( 1 - 2 C ) / ( l - C )  

n is always less than 1 and positive. From the expression for ev we see that physically 
possible solutions exist when n is real and non-negative. Hence 

C < 3 or 2m'/r2 < 3 
in part (1) where m' is the mass contained within the radius r2,  and 

2m/r3 < 4 
in part (2)  where m is the total mass of the sphere. 

choice of the parameters involved. 
The results obtained in this paper can be applied to various problems by proper 
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